Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short-term thermal acclimation.

نویسندگان

  • Andrew E McKechnie
  • Kinesh Chetty
  • Barry G Lovegrove
چکیده

Many birds exhibit considerable phenotypic flexibility in maintenance energy requirements, and up- or downregulate basal metabolic rate (BMR) over time scales of days to weeks during thermal acclimation. However, the extent to which individual birds can reverse the direction of BMR adjustments over short time scales remains unknown. In this study, we examined metabolic responses to short-term thermal acclimation in laughing doves Streptopelia senegalensis. In 30 wild-caught doves (mean body mass=92.6 g) divided into three experimental groups of 10 birds each, initial BMR averaged 0.760+/-0.036 W. Thereafter, each group was acclimated to one of three acclimation air temperatures (T(acc)=10, 22 or 35 degrees C) for 21 days, during which time the doves were housed in individual cages. Following the first acclimation period (acclimation I), BMR (W) was significantly lower and was negatively and linearly related to T(acc) [BMR=0.714-0.005T(acc)]. Acclimation I BMR varied from 0.546+/-0.039 W in doves acclimated to T(acc)=35 degrees C to 0.665+/-0.058 W at T(acc)=10 degrees C. A second acclimation period of a further 21 days (acclimation II) revealed that the direction of BMR adjustments could be reversed within individuals, with acclimation II BMR again negatively and linearly related to T(acc). The slope of the relationship between BMR and T(acc) following acclimation II was not significantly different to that following acclimation I. BMR exhibited consistent inter-individual variation, with a low but significant repeatability of 0.113. The within-individual BMR variation of up to 26% that we observed in laughing doves reveals that BMR is a highly flexible trait in this species, and reiterates the need to take phenotypic plasticity into account in comparative analyses of avian energetic parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning of evaporative water loss in white-winged doves: plasticity in response to short-term thermal acclimation.

We investigated changes in the relative contributions of respiratory evaporative water loss (REWL) and cutaneous evaporative water loss (CEWL) to total evaporative water loss (TEWL) in response to short-term thermal acclimation in western white-winged doves Zenaida asiatica mearnsii. We measured REWL, CEWL, oxygen consumption and carbon dioxide production in a partitioned chamber using flow-thr...

متن کامل

Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long‐ and short‐term phenotypic plasticity

Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an o...

متن کامل

Flexibility in metabolic rate in a small Afrotropical bird Zosterops virens

Reversible, within-individual variation (flexibility) in phenotypic traits may be influenced by natural selection, and may confer costs and benefits on the individual. Specifically, flexibility in avian basal metabolic rate (BMR) seems to be linked to flexibility in the masses of certain organs and in the metabolic intensities of certain tissues, and depends primarily on body mass, but also on ...

متن کامل

Phenotypic flexibility of thermogenesis in the hwamei (Garrulax canorus): responses to cold acclimation.

Cold acclimation in birds involves a comprehensive array of physiological and morphological adjustment ranging from changes in aerobic enzyme activity to metabolic rate and organ mass. In the present study, we investigated phenotypic variation in thermogenic activity in the hwamei (Garrulax canorus) under normal (35°C) or cold (15°C) ambient temperature conditions. Acclimation to an ambient tem...

متن کامل

Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.

Seasonal and daily thermal variation can limit species distributions because of physiological tolerances. Low temperatures are particularly challenging for ectotherms, which use both basal thermotolerance and acclimation, an adaptive plastic response, to mitigate thermal stress. Both basal thermotolerance and acclimation are thought to be important for local adaptation and persistence in the fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007